Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates.

نویسندگان

  • Sangji Lee
  • Hee-Jeong Jang
  • Ho Young Jang
  • Seong Kyu Kim
  • Sungho Park
چکیده

We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth.

Heterostructured nanocrystals containing multiple components are attracting attention due to not only their multifunctional properties but also new features arising from the effective coupling of different domains.1,2 Numerous semiconducting heterostructures have been synthesized by gas-phase deposition and are being used for the miniaturization of electronic and photonic circuits.3 Metallic he...

متن کامل

Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene we...

متن کامل

Asymmetric dumbbells from selective deposition of metals on seeded semiconductor nanorods.

Sowing the seeds: the growth of Au and Ag(2)S nanoparticles at distinct positions on CdSe-seeded CdS heterostructured nanorods can be precisely controlled by variations in the concentration of the Au and Ag precursors, respectively. The ability to direct growth on the nanorods can lead to "Janus-type" structures where Au is located at the more reactive end of the nanorod, whilst Ag(2)S is locat...

متن کامل

TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation.

A facile method was used to prepare uniform Au NR/TiO2 and Au/Ag NR/TiO2 core-shell composite nanoparticles. Au/Ag NR/TiO2 nanoparticles were found to display significantly enhanced visible light photo-catalytic activity compared to Au NR/TiO2 and the commercially available TiO2 nanoparticles. The enhancement mechanism was ascribed to injection of hot electrons of photo-excited Au/Ag NRs to TiO...

متن کامل

Targeted Aucore-Agshell nanorods as a dual-functional contrast agent for photoacoustic imaging and photothermal therapy

Optimizing contrast enhancement is essential for producing specific signals in biomedical imaging and therapy. The potential of using Aucore-Agshell nanorods (Au@Ag NRs) as a dual-functional theranostic contrast agent is demonstrated for effective cancer imaging and treatments. Due to its strong NIR absorption and high efficiency of photothermal conversion, effects of both photoacoustic tomogra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 26  شماره 

صفحات  -

تاریخ انتشار 2016